Introduction

Dry eye symptoms are one of the leading causes of visits to ophthalmologists, and 30% of patients seen by ophthalmologists describe symptoms consistent with dry eye syndrome. Up to 50 million people in the US have some form of dry eye disease, and the prevalence of dry eye syndrome is increasing. Reasons for this rise include an aging population and related hormonal changes associated with aging in females, increased numbers of people undergoing cataract and refractive surgical procedures that are associated with postoperative dry eye, steady growth in contact lens use that can cause and exacerbate dry eye, and an increase in screen-related visually demanding tasks. The pharmaceutical market size for dry eye has been similarly growing. Recent reports suggest a greater than 6% year-over-year growth rate, with an estimate of $1.6 billion based on global sales estimates.

Therapies for dry eye disease are facing a resurgence of interest following a brief lull in venture investment that was seen after several prescription products failed to meet the demanding Phase III primary endpoints required by the FDA for a new drug approval. Dry eye symptoms consist of ocular irritation, visual blurring, grittiness, burning, stinging, and reflexive tearing to name a few. These symptoms are associated with clinical findings, including tear film instability, rapid tear film break-up time, fluctuating visual acuity, corneal surface irregularities, staining of the cornea when vital dyes are introduced into the eye upon examination, and tear hyperosmolarity. The pathophysiology behind dry eye is not completely understood, but it is a multifactorial disease. The tear film is a complex fluid that contains water, salts, mucins, proteins, and lipids. When the quality of the tears diminishes and the epithelial surface of the eye becomes less hydrophilic,
dry eye symptoms develop.

There is wide agreement in the literature and among experts that tear film instability is a critical aspect of dry eye disease and is the ultimate result following the multiple different pathologic processes implicated in dry eye. Tear film instability is associated with a lack of uniform and long-lasting tear film coverage on the surface of the eye. The surface of the eye should be kept wet at all times, both for optimal vision and for maintenance of external eye health. Tear film instability leads to faster tear break-up times and surface desiccation as well as to the signs and symptoms of the disease.

Current Therapies for Dry Eye

Dry eye is broken down into two major diagnostic categories: aqueous deficiency and evaporative. Regardless of the diagnostic category, the symptoms and clinical findings are similar. A reasonable simplification of the common end-stage pathway yields a vicious cycle of tear instability, surface damage, inflammation, continued tear instability, and complaints of irritation. The diagram in Figure 1 describes this sequence of events and also identifies points of disease intervention.

The mainstay of therapy for dry eye is over-the-counter (OTC) artificial tears. Artificial tears effectively moisten the surface of the eye, and these products account for 60% of the pharmaceutical dry eye market. All OTC artificial tears in the US include an active agent from the FDA Monograph for OTC Ophthalmic Drug Products. A commonly known and safe demulcent, such as polyethylene glycol, propylene glycol, carboxymethylcellulose, hypromellose, or glycerin (alone or in combination, at or below a low single digit weight/weight (w/w) percent) is the active ingredient in an OTC artificial tear. Drug product excipients include water, salts, preservatives, and other polymers. Manufacturers are continually adjusting inactive components to improve the performance of artificial tear drug products. For example, Alcon/Novartis includes guar gum and boric acid in their Systane® family of products to create a gelling matrix when the eye drop is exposed to physiologic (or near physiologic) pH. The Systane franchise has become a market leader and significant source of revenue (over $300 million based on annual report analysis) for Novartis. Although Systane does show superiority over competitors with regard to certain metrics of analysis, such as prolongation of tear film break-up time, current artificial tear products including Systane provide only temporary relief and are quickly washed out of the eye. A careful review of the literature suggests very few, if any, commercial products have a duration of activity longer than 1 hour.7-11 Most of the products lose effectiveness at 20 minutes unless they are very viscous.9-12 However, viscous products are poorly tolerated because they interfere with vision. There is a significant opportunity, described in greater detail further, for developing better and longer-acting artificial tears through advances in formulation and excipient...
chemistry. Indeed, the pathology associated with dry eye should respond very well to better and longer-lasting artificial tear products. Disease may eventually be effectively managed with superior-performing OTC artificial tears, thereby cutting significantly into the anticipated growth in the dry eye prescription product market.

The only prescription product currently approved in the US is Restasis®, which is an ophthalmic emulsion formulated with mineral oil to solubilize the cyclosporine active, which is included at the low w/w concentration of 0.05%. Despite its marginal efficacy (it showed statistical benefit over control in only one sign in the Phase III registration trial), Restasis has been a major revenue generator for Allergan. In 2011, it became the single largest prescription ophthalmic pharmaceutical in the US, and Allergan recorded $697 million in net sales of Restasis that year. Restasis comes off patent in 2014, and generic and competitive cyclosporine drug products are being developed in anticipation of Allergan’s loss of patent protection. Dry eye disease has an inflammatory component. Cyclosporine is an immunosuppressant, and there is evidence the anti-inflammatory activity is what drives the acceptance of this product. Topical corticosteroids are also used in the management of dry eye, but no steroid drug product has demonstrated superiority in one sign of dry eye and one symptom of dry eye versus vehicle in randomized controlled trials in dry eye subjects. One of the major reasons for the inability of prescription products to reach statistically significant efficacy in dry eye is that the control formulations are essentially artificial tears products, which as previously mentioned, are effective. In controlled trials, subjects use the vehicle regularly, and it consistently provides a benefit. With that being said, soft steroids, such as loteprednol etabonate ophthalmic suspension (0.2% or 0.5%) by Bausch and Lomb are used off label in the management of dry eye. There are a host of new actives under development by both small and large pharmaceutical companies, including resolvins, lymphocyte function associated antigen-1 antagonists, secretagogues, and other types of anti-inflammatory agents. Some of these programs are in Phase III clinical trials at this time; however, a detailed analysis of these agents is beyond the scope of this article.

Drug formulation is critical to the success of pharmaceutical products, including dry eye therapeutics. It is conceivable that prescription drug products could have fared better in Phase III trials had the active agent been formulated to maximize the activity and duration of action of the API. In the artificial tear category, it is common to see new formulations launched frequently by small and large players.
A Fresh Approach

Particle Sciences Inc. and Eyeon Therapeutics, Inc. formed a joint venture to formulate better ophthalmic drug products. The two companies brought important and diverse expertise to ophthalmic drug development. Eyeon Particle Sciences LLC was born out of the cooperation to advance a novel multifunctional graft copolymer as an excipient in ophthalmology.

The rationale beyond the program, which has focused on dry eye, is that current demulcants are effective; they simply do not last long enough. That is where PEGPLUS™ (poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG)) comes into play. PEGPLUS is a versatile molecule with many applications in vitro and in vivo. For example, PEGPLUS has been shown to reduce both the adhesion of cells and bacteria to coated surfaces. A PEGPLUS-coated surface shows improved wettability when applied to hydrophobic surfaces. The polymer also plays a role in proprietary drug delivery (work in progress at Particle Sciences). The molecule has several components that may be adjusted allowing for the fine tuning of its activity.

The chain length of the PLL backbone can be selected, as can the PEG side chain molecular weight. The graft ratio can also be adjusted to increase or decrease adherence to negatively charged surfaces. The lead PLL-g-PEG embodiment used by Eyeon Particle Sciences LLC was selected for its versatility in multiple applications. An illustrative structure is shown in Figure 2.

PEGPLUS was believed to be an ideal excipient for a topical OTC artificial tear because the cationic backbone of PLL will adhere to epithelial surfaces, including the cornea and conjunctiva, as well as some mucins, and project the PEG side chains away from the surface, creating a hydrophilic coating and conditions conducive to corneal moisture retention. The side chains allow for the capture of water and actives.

Clinical Evaluation

PEGPLUS was formulated at a 1% w/w concentration in a novel artificial tear, named Eyeon Protect™, containing 1% glycerin as the active. Preclinical safety and toxicity testing in a rabbit model showed perfect safety. There was no genotoxicity. The excellent preclinical safety profile is not surprising as PEGPLUS is a large polymer created by joining two large and safe polymers, both of which are GRAS. A clinical trial was carried out by James Aquavella, MD, and sub-investigators in the Ocular Surface Research Group at the Flaum Eye Institute to evaluate the performance of this novel artificial tear. Impressive, clinically meaningful, and statistically significant results were generated. This clinical trial has been published online. The paper is titled Novel Formulation of Glycerin 1% Artificial Tears Extends Tear Film Break-Up Time Compared with Systane Lubricant Eye Drops.

This randomized, controlled, double-masked study evaluated 16 subjects in a single visit, single instillation, and fellow-eye controlled study. The entire spectrum of dry eye patients - from mild to severe - was included in this exploratory trial, and enrollment was stratified into three groups: mild, moderate, and severe. The study was designed to compare the extension of tear film break-up time between Systane, the market-leading brand, and Eyeon Protect at several time points following instillation of test article or active control. Tear film break-up time is one of the best known and most commonly used metrics to assess dry eye both in the clinic and for clinical trials. This study utilized non-invasive break-up time, which has shown excellent reliability and
reproducibility in the Aquavella lab. The advantages of non-invasive measures are that placing dyes and anesthetics in the eye before instillation of the artificial tear product. Tear film break-up times were repeated at 15, 30, 60, and 120 minutes following instillation. The environment (humidity, room temperature, and airflow) was controlled, and participants’ activities were restricted to ensure ideal comparisons between subjects.

Eeyeon Protect showed a statistically significant extension of tear film break-up time at the 15-minute time point (p = 0.05), doubling Systane’s extension. Systane extended tear break-up time by 7.4 seconds, while Eeyeon Protect showed a 14.67-second extension at this same time point (Figure 3).

The Eeyeon Protect fluorescein break-up time was 4.92 seconds longer than Systane’s at the 15-minute time point (Figure 6).

Eeyeon Protect has also fared well in pilot evaluations using wave front analysis and tear film videography. In a subsequent clinical evaluation, Eeyeon Protect was compared to the latest-generation product from Alcon in the Systane portfolio, Systane Balance. Figure 7 shows the crisp and more uniform concentric circles seen when a Placido disk is reflected off the Eeyeon Protect corneal surface as compared to Systane Balance. This image was obtained from the Ocular Surface Research Group, and the methodology was similar to the aforementioned trial (Figure 7).

Summary

In summary, PEGPLUS helps improve the performance of artificial tears. This multifunctional graft copolymer is safe and can be used in a host of topical ophthalmic applications. The lead product is Eeyeon Protect, which is being commercialized at this time. Advanced formulation and proper use of excipients can play an important role in bringing better topical ophthalmic drug products to the growing ophthalmology market.

Authors’ Note

Figures 2 through 5 from Reference No. 22 reproduced with permission from the Journal of Ophthalmic Pharmaceuticals and Therapeutics.

References

Dr. David M. Kleinman
President, CEO & Co-Founder
Eyeon Therapeutics, Inc.

Dr. David M. Kleinman is President, CEO, and Co-founder of Eyeon Therapeutics, Inc., an early stage ophthalmology firm developing novel technologies to treat eye diseases. Eyeon Therapeutics and Particle Sciences, Inc. have formed a joint venture to commercialize PEGPLUSTM as an improved therapy for dry eye syndrome. Dr. Kleinman is a board-certified ophthalmologist with fellowship training in vitreoretinal surgery, and he also serves as a part-time Associate Professor of Ophthalmology at the Flaum Eye Institute at the University of Rochester. In addition to running Eyeon Therapeutics and working at the Flaum Eye Institute, he consults for biotechnology, medical device, pharmaceutical, and investment firms nationally. He has helped multiple start-ups develop intellectual property, generate preclinical data, raise money, submit regulatory filings, and complete proof-of-principle and Phase I clinical trials. He also assists larger companies with due diligence and pharmaceutical development in ophthalmology. He is the former Chief of Ophthalmology at Denver Health Medical Center in Denver. He earned his BA from Brown University, his MD with honors from the University of Colorado School of Medicine, and graduated as a Dean’s Scholar from the Simon School of Business.

Dr. Andrew Loxley
Director of New Technologies
Particle Sciences, Inc.

Dr. Andrew Loxley is Director of New Technologies at Particle Sciences Inc., where he runs a formulation group applying emerging formulation technologies, including engineered particles and hot melt extrusion to solving drug delivery problems. Prior to joining Particles Sciences in 2005, he led development efforts in next-generation lithium ion batteries at A123 Systems Inc., electrophoretic displays at EINK Corp., and emulsion polymers at Synthomer Ltd. He earned his BSc in Chemistry and Polymer Science from the University of Sussex, UK, and his PhD in Physical Chemistry focusing on Microencapsulation from the University of Bristol, UK. Dr. Loxley is the inventor on more than 40 patents and author of two book chapters and several peer-reviewed and trade-journal articles.

Dr. Gillian M. Tocci
Analyst Services Department
Particle Sciences, Inc.

Dr. Gillian M. Tocci earned her PhD in Chemistry from Trinity College, Dublin, Ireland in 2004. Her research on 1,8-naphthalimides as DNA intercalators and colorimetric sensors was performed under the supervision of Dr. Thorri Gunnlaugsson in the Supramolecular and Medicinal Chemistry group. She then carried out post-doctoral research on glycopeptide derivatives of the anti-proliferative factor of interstitial cystitis under the supervision of the late Dr. Chris Michejda, in the Molecular Aspects of Drug Design group at the National Cancer Institute, Frederick, MD. In 2006, Dr. Tocci joined the Analytical Services Department at Particle Sciences.

Dr. George Ngwa
Analytical Chemist
Particle Sciences, Inc.

Dr. George Ngwa was an Analytical Chemist at Particle Sciences Inc. in Bethlehem PA, US. Prior to this, Dr Ngwa’s research focused on the development and validation of Chromatographic and Electrophoretic methods for the analysis and characterization of a wide range of small and large molecules at Orasure Technologies Inc. He earned his PhD in Pharmaceutical Chemistry from Lehigh University and has published and presented articles in national and international journals and conferences.

Dr. William Gensheimer
Investigator, Ocular Surface Research Group
University of Rochester

Dr. William Gensheimer is currently completing his residency in ophthalmology at the Flaum Eye Institute at the University of Rochester. He earned his MD from the University of Rochester with Distinction in Research and with Distinction in Community Service and his BA in Biology from Cornell University. Dr. Gensheimer has been an investigator in the Ocular Surface Research Group at the University of Rochester since 2007.

Dr. Robert W. Lee
Vice President of Pharmaceutical Development
Particle Sciences, Inc.

Dr. Robert W. Lee is Vice President of Pharmaceutical Development at Particle Sciences Inc., where he is responsible for product development at Particle Sciences as well as providing support to clinical manufacturing operations and business development. His responsibilities include oversight of formulation development, drug delivery, analytical sciences, quality control, and quality assurance. Before joining Particle Sciences, Dr. Lee held senior management positions at Novavax, Inc., Lytropic Therapeutics, Inc., and Imcor Pharmaceutical Corp. Dr. Lee holds BS degrees in Biology and Chemistry from the University of Washington and a PhD in Physical Biorganic Chemistry from the University of California-Santa Barbara. He has published articles in numerous peer-reviewed journals and three book chapters plus holds 11 issued patents and 14 provisional or PCT patent applications. He also has more than 22 years of experience in pharmaceutical research and development of both therapeutic drugs and diagnostic imaging agents. He maintains strong academic ties, including an appointment as Adjunct Associate Professor of Pharmaceutical Chemistry at the University of Kansas in 1992, and serving as a reviewer for both the International Journal of Pharmaceutics and Journal of Pharmaceutical Sciences and EAB member for Drug Development & Delivery.